Dupuytren's: a systems biology disease

نویسندگان

  • Samrina Rehman
  • Royston Goodacre
  • Philip J Day
  • Ardeshir Bayat
  • Hans V Westerhoff
چکیده

Dupuytren's disease (DD) is an ill-defined fibroproliferative disorder of the palm of the hands leading to digital contracture. DD commonly occurs in individuals of northern European extraction. Cellular components and processes associated with DD pathogenesis include altered gene and protein expression of cytokines, growth factors, adhesion molecules, and extracellular matrix components. Histology has shown increased but varying levels of particular types of collagen, myofibroblasts and myoglobin proteins in DD tissue. Free radicals and localised ischaemia have been suggested to trigger the proliferation of DD tissue. Although the existing available biological information on DD may contain potentially valuable (though largely uninterpreted) information, the precise aetiology of DD remains unknown. Systems biology combines mechanistic modelling with quantitative experimentation in studies of networks and better understanding of the interaction of multiple components in disease processes. Adopting systems biology may be the ideal approach for future research in order to improve understanding of complex diseases of multifactorial origin. In this review, we propose that DD is a disease of several networks rather than of a single gene, and show that this accounts for the experimental observations obtained to date from a variety of sources. We outline how DD may be investigated more effectively by employing a systems biology approach that considers the disease network as a whole rather than focusing on any specific single molecule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional genomics in identification of drug targets in Dupuytren's contracture.

Although functional genomics methods offer new viewpoint on molecular processes involved in particular pathological state, these methods, in particular proteomics, are still under-represented in Dupuytren's contracture research. However, several recent papers based on functional genomics technologies represent a breakthrough in studying Dupuytren's contracture as they revealed new molecular pla...

متن کامل

Understanding Dupuytren's Disease Using Systems Biology: A Move Away from Reductionism

1 Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, UK 2 Quantitative Molecular Medicine Research, Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK 3 Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK 4 Doctoral Training Centre Integrative Syst...

متن کامل

Cellular structure and biology of Dupuytren's disease.

Numerous studies support the idea that the myofibroblast is a key cell responsible for the tissue contraction in Dupuytren's disease. In vitro models have been developed to study the underlying cellular basis of myofibroblast differentiation and contraction. Studies suggest that the growth factor TGF-beta 1 combined with mechanical stress can promote the differentiation of fibroblasts into myof...

متن کامل

The role of an MMP inhibitor in the regulation of mechanical tension by Dupuytren's disease fibroblasts.

Mechanical tension and contracture are two related facets of tissue biology. This study assessed the effect of ilomastat, a broad-spectrum matrix metalloprotease (MMP) inhibitor, on generation of tension by Dupuytren's disease fibroblasts. Nodule and cord-derived fibroblasts were isolated from five patients with Dupuytren's disease; flexor retinaculum acted as the control. A culture force monit...

متن کامل

Calcium-dependent signaling in Dupuytren's disease.

BACKGROUND Previous studies suggest that Dupuytren's disease is caused by fibroblast and myofibroblast contractility. Cell contractility in smooth muscle cells is caused by calcium-dependent and calcium-independent signaling mechanisms. In the calcium-dependent pathway, calcium/calmodulin activates myosin light chain kinase (MLCK). In this study, the effects of calcium/calmodulin inhibition wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011